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Abstract

Objective: Cardiac structure and function are important predictors for cardiovascular disease in adults. Not much is
known about tracking of cardiac measures, other than left ventricular mass, from early life onwards. We examined
whether and to what extent cardiac measures track from infancy into school-age.

Methods: We performed a population-based prospective cohort study among 1072 children. Aortic root diameter, left
atrial diameter, left ventricular mass, relative wall thickness and fractional shortening were measured repeatedly by
echocardiography. We explored tracking between infancy (1.5, six and 24 months) and school-age (six and 10 years).
Results: Of all cardiac measures, aortic root diameter, left atrial diameter and left ventricular mass were significantly
correlated between infancy and school-age (r=0.10-0.42, all p-values < 0.01), with the strongest correlations between
24 months and 10 years. Of the different structures, aortic root diameter showed the strongest correlations.
Approximately 30% of children who were in the lowest or highest quartile of a measure at the age of .5 months
remained in that quartile at the age of 10 years. When analysing the effects of the infant cardiac measures on the same
outcomes at 10 years in conditional regression models, we observed effect estimates of the same size for the different
age windows.

Conclusion: Our results suggest moderate tracking of structural cardiac measures from early infancy until school-age,
which become stronger at older ages, but not of relative wall thickness or fractional shortening. Moderate tracking of
cardiac structures suggests that cardiac structures are at least partly determined in early life.
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Introduction

Cardiovascular disease is a major public health prob-

lem and seems to originate at least partly in early life.'?
Common risk factors for cardiovascular disease,
including blood pressure and lipid levels, track from
childhood to adulthood.** Tracking represents the
maintaining of a given rank order relative to peers
over time.? Previous studies have shown that left ven-
tricular mass (LVM) tracks from childhood to adult-
hood.'? Longitudinal studies on tracking of LVM in
children from the age of seven years until the age of
22 years show correlation coefficients in the range of 0.4
to 0.7.' Previously, we have reported that tracking of
LVM is also present during the first two years of life.’
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Increased LVM is an independent predictor of cardio-
vascular disease and mortality in adults.*” Next to
LVM, an increase in aortic root diameter (AOD) is
associated with increased risk for heart failure, whereas
an increase in left atrial diameter (LAD) is associated
with cardiovascular events, such as stroke, and cardio-
vascular mortality in adults.®” The predictive value of
increased LVM for cardiovascular events is higher
when combined with information about relative wall
thickness (RWT).” To the best of our knowledge, no
previous studies have analysed tracking of these differ-
ent cardiac structural and functional measures from
infancy to childhood.

We hypothesize that structural and functional car-
diac measures already track from infancy onwards.
Therefore, we examined the extent of tracking from
infancy into school-age in a population-based prospect-
ive cohort study among 1072 children followed from
foetal life to the age of 10 years. We measured cardiac
structure and function repeatedly with echocardiog-
raphy at the ages of 1.5, six and 24 months, and six
and 10 years. Measures included LVM, AOD, LAD,
RWT and fractional shortening.

Methods
Design and study population

This study was embedded in the Generation R Study, a
population-based, prospective cohort study from foetal
life onwards in Rotterdam, The Netherlands.'® All chil-
dren were born between 2002 and 2006. Details of this
study have been described previously.'® Detailed car-
diovascular measures were performed in a subgroup
of 1106 Dutch children.'” Of the total of 1079 live
born singleton children, we excluded seven children
from the analysis due to cardiac abnormalities (flow-
chart given in Supplemental Material Figure S1 online).
Echocardiograms were successfully performed in 85%—
95% of the participating children at the different ages,
with 24 months being the least successful. Missing echo-
cardiograms were mainly due to crying or unavailabil-
ity of equipment or echocardiographer. Written
informed consent was obtained from parents of partici-
pants. The study has been approved by the local
Medical Ethics Committee.

Left cardiac structures until the age of 10 years

Two-dimensional M-mode echocardiograms were per-
formed when the children were aged 1.5, six and 24
months and at the ages of six and 10 years in our dedi-
cated research centre. We used methods recommended
by the American Society of Echocardiography.'
Intraobserver and interobserver intraclass correlation

coefficients (ICCs) were calculated previously in 28 chil-
dren with a median age of 7.5 years (interquartile range
3.0-11.0) and varied between intraobserver ICC 0.91 to
0.99 and interobserver ICC 0.78 to 0.96.'> We mea-
sured AOD, LAD, left ventricular end diastolic diam-
eter (LVEDD), left ventricular posterior wall thickness
(LVPWT), and interventricular septum thickness (IVS)
and calculated fractional shortening and LVM.'""* To
assess left ventricular concentricity, we calculated RWT
as (2*LVPWT)/LVEDD.'*

To account for differing body sizes, we additionally
standardized all cardiac outcomes on body surface area
(BSA) using Generalized Additive Models for Location,
Size and Shape using R, version 3.2.0 (R Core Team,
Vienna, Austria).!> These models enable flexible model-
ling, taking into account the distribution of the response
variable.'® Worm plots and Akaike Information
Criterion were used in sensitivity analyses to obtain the
best model fit. Weight and length were measured at
the cardiac ultrasound. BSA was computed using the
Haycock formula (BSA (m?)=0.024265 x weight
(ke)® 57 x height (cm)*3964 13

Statistical analysis

First, we used one-way analysis of variance and Chi-
square tests to compare childhood -characteristics
between boys and girls. Second, to examine whether
children maintain their position in the distribution of
the different cardiac structure measures, we estimated
the Pearson’s correlation coefficients. AOD, LAD and
LVM were standardized on BSA to account for differ-
ing body sizes. Since RWT and fractional shortening
are ratios between cardiac measures and not dependent
on BSA, we constructed standard deviation scores
(SDSs) using this formula: (observed value-mean)/
standard deviation. Third, we categorized the cardiac
outcomes in quartiles and calculated the percentages of
children that remained in the lowest or highest quartile
between the measures at 1.5 months and 10 years.
Finally, we performed conditional regression analyses
to identify the independent associations of the cardiac
measures at the different age windows with cardiac
measures at age 10 years. We used standardized resi-
duals obtained from regression of the cardiac structure
measure at a specific age window on the previous meas-
ures.!” These standardized residuals are independent
from each other and can be used in a regression
model together. The R? of these models gives insight
into the amount of variability of the cardiac measure at
the age of 10 years, explained by the cardiac measures
of the previous age windows combined. There was no
statistical interaction for sex in relation to tracking of
any of the cardiac measures. Statistical analyses were
performed wusing SPSS version 21.0 (IBM SPSS
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Statistics for Windows, Armonk, NY, USA;

IBM Corp.).

Results

Participant characteristics (Supplemental Table Sl1
online) show that boys had higher birth weight and
had greater height and weight in infancy, but at
school-age length and weight did not differ between
boys and girls. The cardiac parameters are shown in
Table 1.

Table 2 shows that AOD, LAD and LVM correlated
across all age windows, with correlation coefficients
ranging between 0.10 and 0.42 (all p-values <0.01).
The measures of AOD showed the strongest

correlations across all age windows (r=0.27—0.42,
all p-values <0.01). The correlations across infancy to
school age were highest between 24 months and 10
years. Correlations within school-age (6-10 years)
were higher than in infancy (1.5-24 months). The meas-
ures of RWT and fractional shortening correlated
inconsistently between periods and the correlations
were weaker than the correlations of the other
measures.

Figure 1 shows the distribution of children in quar-
tiles of cardiac measures at the age of 10 years for the
children who were in the lowest quartile of the measure
at the age of 1.5 months, and for the children who were
in the highest quartile at 1.5 months. Of the children
who were in the lowest quartile of AOD at 1.5 months

Table 1. Structural and functional cardiac measures in boys and girls.

Successful Total group Boys Girls
measures (n) N=1072 n=>553 n=519 p-value
Aortic root diameter, mm
I.5 months 737 1.7 (1.2) 12.0 (1.2) 1.5 (1.1) <0.01
6 months 728 13.7 (1.2) 14.0 (1.2) 13.4 (1.2) <0.01
24 months 694 16.3 (1.5) 16.7 (1.5) 16.0 (1.4) <0.01
6 years 817 19.2 (1.8) 19.7 (1.9) 18.6 (1.6) <0.01
10 years 781 21.7 (1.8) 22.3 (1.7) 21.2 (1.7) <0.01
Left atrial diameter, mm
I.5 months 740 16.8 (1.9) 17.0 (1.8) 16.6 (1.9) 0.01
6 months 731 18.0 (1.9) 18.0 (1.9) 18.0 (1.9) 0.78
24 months 690 20.6 (2.4) 20.7 (2.5) 20.5 (2.4) 0.20
6 years 812 25.0 (2.7) 25.4 (2.6) 24.6 (2.7) <0.01
10 years 78l 27.4 (2.7) 28.0 (2.6) 26.8 (2.7) <0.01
Left ventricular mass, g
I.5 months 659 145 (3.1) 15.2 (3.2) 13.8 (2.8) <0.01
6 months 666 19.4 (4.0) 20.3 (4.0) 18.4 (3.7) <0.01
24 months 645 31.3 (5.6) 32.6 (5.9) 30.0 (5.0) <0.01
6 years 807 53.6 (I1.1) 55.4 (11.3) 51.8 (10.7) <0.01
10 years 779 72.5 (12.0) 75.6 (11.9) 69.5 (11.4) <0.01
Relative wall thickness
I.5 months 683 0.34 (0.07) 0.33 (0.07) 0.35 (0.07) 0.02
6 months 693 0.32 (0.07) 0.33 (0.07) 0.32 (0.06) 0.33
24 months 673 0.30 (0.07) 0.30 (0.07) 0.30 (0.06) 0.56
6 years 817 0.30 (0.05) 0.30 (0.05) 0.30 (0.05) 0.20
10 years 782 0.30 (0.03) 0.30 (0.03) 0.30 (0.03) <0.01
Fractional shortening, %
I.5 months 687 35.3 (5.0) 35.3 (4.8) 354 (5.3) 0.93
6 months 695 37.1 (4.7) 37.2 (4.6) 37.1 (4.8) 0.72
24 months 663 35.5 (4.6) 35.4 (4.6) 35.5 4.7) 0.88
6 years 817 35.3 (4.5) 35.5 (4.6) 35.1 (4.6) 0.23
10 years 781 35.8 (4.5) 36.1 (4.6) 35.5 (4.3) 0.04

Values are means (SD). p-value was estimated by using one-way analysis of variance test.
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Table 2. Correlation tables of different age windows of structural and functional cardiac measures.

1.5 months 6 months 24 months 6 years 10 years

Aortic root diameter

1.5 months |

6 months 0.37** |

24 months 0.32%* 0.31%* |

6 years 0.28** 0.27+* 0.40%* |

10 years 0.33%* 0.38** 0.42+* 0.41%* |
Left atrial diameter

I.5 months |

6 months 0.23%* |

24 months 0.14%* 0.23%* |

6 years 0.16%* 0. 14 0.24*+* |

10 years 0.13%* 0.10%* 0.25%* 0.35%* |
Left ventricular mass

1.5 months |

6 months 0.38** |

24 months 0.227%* 0.24** |

6 years 0.20%* 0.31%* 0.31%* I

10 years 0.21%* 0.32%* 0.33%* 0.29%* |
Relative wall thickness

6 months 0.04 |

24 months 0.0l -0.01 |

6 years 0.11%* 0.12%* 0.0l |

10 years -0.03 0.03 0.17%* 0.07 |
Fractional shortening

I.5 months |

6 months 0.15%* |

24 months 0.10* 0.20*%* |

6 years 0.24%* 0.10% 0.13%* |

10 years 0.02 —-0.04 0.16%* 0.18** |

Numbers are Pearson’s correlation coefficients.
*p < 0.05
*p <0.01

36% remained in the lowest quartile at the age of 10
years, while 8% changed to the highest quartile. Of the
children who were in the highest quartile at 1.5 months,
45% remained in the highest quartile, while 10% chan-
ged to the lowest quartile. AOD showed the strongest
trend. The trends of children remaining in the lowest
(30%) or highest (29%) LAD quartile and LVM quar-
tiles (29% and 37%) from 1.5 months to 10 years were
less clear. The distribution of RWT and fractional
shortening did not show the same clear trend.
Distribution for all infant quartiles is shown in
Supplemental Material Table S2. Trends found for 24
months were stronger than those observed for 1.5
months (Supplemental material Figure S2).

The results of the conditional regression analyses
focused on identification of specific age windows for
the cardiac outcomes at age 10 years did not show

one clear age window for all outcomes (Supplemental
Material Figure S3). AOD at 1.5 months had the stron-
gest, independent association with AOD at 10 years.
The other periods each had an additional, but less
strong effect. The explained variability (R?) of the com-
bined measures on AOD at 10 years was 31%. For
LAD at 10 years, the strongest independent associ-
ations were observed at the age windows of 24
months and six years, the R? of the model was 21%.
The effect estimates of the different age windows of
LVM on the measure at 10 years were of similar size,
the R? was 18%. RWT was in none of the age windows
associated with RWT at 10 years, independently from
the other age windows; the R> was 2%. For fractional
shortening, an independent association at the age of 24
months, with fractional shortening at 10 years, was
seen; the R? of the model was 4%.
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Figure 1. Distribution of cardiac measures in school-age for children who were in the lowest or highest quartile at 1.5 months.
Bars represent the percentage of children with a cardiac measure in quartile groups, at the age of 10 years (x-axis). The first part
represents the distribution of cardiac structure at the age of 10 years, for the children who were in the lowest quartile group at the
age of 1.5 months; while the second part represents the distribution of cardiac structure at 10 years, for the children who were in the
highest quartile group at 1.5 months of age. For example, the bar on the left shows that of the children who were in the lowest quartile
group of aortic root diameter at the age of 1.5 months, over 35% were still in that quartile group at the age of 10 years. Distribution
for children who were in the lowest or highest quartile at 24 months is shown in Supplemental Material Figure S2 online.

Discussion

In this population-based prospective cohort study, we
observed moderate tracking of AOD, LAD and LVM
between the ages of 1.5 months and 10 years. Around
30% of the children who were in the lowest or highest
quartiles at the age of 1.5 months remained in the same
quartile at the age of 10 years. Tracking was not con-
sistently seen in RWT and fractional shortening.

Interpretation of main findings

Tracking can be defined as the stability of a child’s rank
in a distribution over time.'® Tracking of structural and
functional cardiovascular measures suggests that car-
diac structure originates at least partly in early life.
Adverse cardiac structure in childhood could possibly
place individuals at greater risk for cardiovascular dis-
ease in later life. Tracking can also be important for



Toemen et al.

1413

identifying individuals at risk for cardiovascular discase
early in life.'"® Longitudinal studies have shown track-
ing of common risk factors for cardiovascular disease
including blood pressure, lipid levels and LVM from
childhood to adulthood.” Tracking of cholesterol
(r=0.53) and body mass index (BMI) (r=0.53)
showed the strongest coefficients of tracking between
eight and 21 years in a study among 354 participants,
followed by tracking of triglycerides (r =0.33), diastolic
blood pressure ( =0.28), high-density lipoprotein chol-
esterol (r=0.26), and systolic blood pressure
(r=0.21).%

Previously, we reported moderate tracking of car-
diac structures and function between the ages of 1.5
and 24 months in the same study group as in the cur-
rent study.’ Another study describes tracking of LVM
in adolescents. This study followed 231 normotensive
adolescents’ years and reported a tracking coefficient
for LVM of 0.41 between the ages of 11 and 17
years.”> In line with this study, we observed moderate
tracking of LVM. In our study we observed slightly
lower tracking coefficients of LVM than in the study
on adolescents. This phenomenon has also been
described in tracking of blood pressure.”'® Baseline
age was an important predictor of tracking of blood
pressure, with stronger tracking in (late) adolescence
than in childhood.>"®

To our knowledge, tracking of AOD, LAD, RWT
and fractional shortening in children has not been stu-
died before. In our study, we observed tracking of
AOD and LAD, but we did not find consistent tracking
of RWT and fractional shortening. Since AOD and
LAD correlate with LVM, we expected these measures
to track. Tracking of AOD was stronger than tracking
of LAD and LVM. Echocardiography of LAD
and LVM shows more intraobserver and interobserver
variation than the measures on AOD.'? Larger meas-
urement error in repeated measures causes underesti-
mation of the true tracking coefficients, which could
explain the observed differences.'® RWT is used in
clinic as an extension to LVM to determine geometry
of the heart. It represents the ratio between LVPWT
and LVEDD, and both are dependent on growth. We
would have expected that the ratio between these two
measures would be constant in a healthy child and
would show tracking. However, this was not the case.
The same was observed for fractional shortening. This
measure is the percentage change in cavity diameter. It
is possible that there is very limited variation of these
measures between persons in this relatively healthy
population, and that there is a high variability of the
repeated measurements in a participant, due to factors
such as measurement error, heart rate variability and
blood pressure variability. This within person variabil-
ity could be large enough to obscure any possible real

tracking. Also, the explained variability of the first four
measures on RWT and fractional shortening at the age
of 10 years was very low. This would indicate that not
the measures at earlier ages, but other factors at the
time of the measurement can explain the variability.
Factors associated with RWT and fractional shortening
could be BMI, exercise, heart rate and blood pressure.19

Various factors may affect tracking of cardiac struc-
tures. In adults, cardiac remodelling is varied between
the sexes.”” However, even though a study in 231 ado-
lescents found that boys have a larger LVM than girls,
the degree of tracking was not influenced by sex.> The
results are comparable to our results. We also found
that boys have larger cardiac structures, but no differ-
ences in the degree of tracking. In childhood and ado-
lescence, most variation in cardiac size can be explained
by lean mass and not by cardiovascular risk factors.?!-*
In our study, boys had a higher BSA and higher lean
mass index than girls, which can explain the larger car-
diac structures.”?

To determine the most important age window for
cardiac tracking, we used conditional analyses. With
these analyses, we could determine the effect of a meas-
ure at a given age on the measure at 10 years, independ-
ent of the effect of the measures at the other ages. We
did not find one age window to be consistently more
strongly correlated than the other age windows. Our
results suggest that the measures at 24 months seem
to be a stronger predictor in infancy for the measures
at the age of 10 than do the measures at 1.5 months.
This finding may reflect stability of cardiac structures
after the first two years of life, or may reflect just a
shorter time interval between the ages. However, we
did not observe stronger correlations between six and
10 years.

The observed moderate tracking is important from
an aetiological view point. It suggests that variation in
cardiac structure partly originates in early life and
might put individuals at risk for later cardiovascular
disease. However, based on this research, we cannot
determine whether tracking alone provides enough evi-
dence to identify the individuals at risk in early life.
More research and longer follow-up is needed to
explain the variation in cardiac structure and to study
whether this variation indeed leads to increased cardio-
vascular risk later in life, before predictive models can
be created.

Study limitations

The main strength of this study is its population-based
prospective study design starting from early foetal life.
Also, we were able to perform echocardiography
repeatedly in a large cohort of children over a time
period of 10 years. Another strength is that we
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standardized the cardiac structural measures on BSA;
this way we created SDSs that were independent from
body size at the time of measuring. This ensured that
we measured cardiac tracking, as opposed to tracking
of linear growth in childhood, since cardiac structures
in childhood are mainly dependent on body size.?' This
study was performed in a Dutch population, making it
less generalizable to other ethnicities. A limitation of
our study is that for each time point 15-25% of the
children did not visit the research. Of the children
who did visit, we could not obtain cardiac measures
in 5-15% of the children. Missing values were because
of the child being uncooperative at time of measure, or
because of defective equipment or absent echocardio-
grapher. However, we do not think these missing values
lead to bias, because it is very unlikely that the correl-
ation coefficients we found would be different in the
children in whom we were not able to obtain cardiac
measures. As mentioned previously, measurement error
in repeated measures causes underestimation of the true
tracking coefficients.'® Since measurement error is more
likely in the younger children, who have smaller hearts
and are less cooperative, this could have underesti-
mated the tracking coefficients we found within infancy
and from infancy to childhood. Also, measurement
inaccuracies of the ventricular diameter and wall thick-
ness could increase measurement error in the calculated
measures, such as LVM, RWT and fractional shorten-
ing. Studies on tracking of cardiac structure with more
precise methods, such as cardiac magnetic resonance
imaging or speckle-tracking echocardiography for car-
diac function, could be an interesting addition to this
research field.**

Conclusion

Our study indicates that children who have a larger
cardiac size measured by LVM, AOD and LAD com-
pared with their peers in infancy are also more likely to
have a larger cardiac size in school-age. The strongest
period for tracking across infancy to school-age seems
to be between the ages of 24 months and 10 years. Our
results suggest moderate tracking of structural cardiac
measures from early infancy until school-age, which
become stronger at older ages, but not of fractional
shortening or RWT. Moderate tracking of cardiac
structures suggests that cardiac structures are at least
partly determined in early life. Whether early cardiac
structure and functional development predicts later life
cardiac disease should be further studied.
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